WORKSHOP ON THE QUALITY OF RECYCLED WATER AND ITS APPLICATION IN AGRICULTURE Organised by: SEWERAGE BOARD OF LIMASSOL-AMATHUS

LIMASSOL 27 APRIL 2012

WATER DEVELOPMENT DEPARTMENT 1047 NICOSIA REPUBLIC OF CYPRUS MINISTRY OF AGRICULTURE , NATURAL RESOURCES AND ENVIRONMENT

TREATED EFFLUENT REUSE SCHEME IN CYPRUS

ANGELIKI LARCOU YIANNAKOU SANITARY ENGINEER SEWAGE AND REUSE DIVISION

CONTENTS

- 1. INTEGRATED WATER MANAGEMENT LAW 79(I) /2010
- 3. WASTEWATER TREATMENT PLANTS
- 4. SUPPLY OF TREATED EFFLUENT
- 7. REUSE OF TREATED EFFLUENT
- 8. QUANTITIES OF TREATED EFFLUENT PER PLANT
- **11. FUTURE QUANTITIES OF TREATED EFFLUENT**
- **12. SELLING RATES OF TREATED EFFLUENT**
- **15. AQUIFER RESCHARGE**
- **17. TREATED EFFLUENT IRRIGATION NETWORKS**
- **19. OTHER USES OF TREATED EFFLUENT**
- 21. QUALITY CHARACTERISTICS AND CONTROL OF THE TREATED EFFLUENT FOR AGGLOMERATIONS ABOVE 2000P.E. ACCORDING TO THE DISCHARGE PERMITS:.
- 12. QUALITY SPECIFICATIONS OF THE TREATED EFFLUENT FOR AGGLOMERATIONS LESS THAN 2000 P.E.
- **13. ANALYSES OF TREATED EFFLUENT**
- 14. METHODS OF DISINFECTION OF URBAN WASTEWATER TREATMENT PLANTS
- **15. DATA FOR SOIL IRRIGATED WITH TREATED EFFLUENT**
- **16. GENERAL COMMENTS FOR THE REUSE OF TREATED EFFLUENT**

1. Integrated Water Management Law N. 79(I) / 2010

PART V – WASTEWATER

Based on the new law, Water Development Department is responsible for the following regarding wastewater treatment:

- Establishment of wastewater treatment system
- Storm water drainage system establishment
- Local authority technical advisor
- Technical Advisor for Sewerage Boards
- Sewage Treatment of all Buildings of the Republic
- Supply of water from the treatment of sewage

2. Wastewater Treatment Plants a) Existing Urban Wastewater Treatment Plants

Plant	Owner of the Plant	Capacity (m ³ /day)
Anthoupoli	Nicosia Sewerage Board	13.000
Vathia Gonia	Nicosia Sewerage Board	22.000
Vathia Gonia	Water Development Department	2.100
Mia Milia	UNDP (under construction)	30.000
Limassol (Moni)	Sewerage Board of Limassol Amathus	40.000
Larnaca	Sewerage Board of Larnaca	8.500 (18.000)
Paphos (Achelia)	Sewerage Board of Paphos	19.500
Paralimni –Ayia Napa	Sewerage Board of Paralimni- Ayia Napa	21.000

b. CENTRAL MUNICIPAL AND INDUSTRIAL WASTEWATER TREATMENT PLANT IN VATHIA GONIA

This plant has been constructed by the Water Development Department and treats waste which is transferred by tankers from the districts of Nicosia and Larnaca (areas which are not connected yet with sewer system but they use septic tanks).

It also treats five types of industrial waste, transferred also by tankers such as:

- dairy washings,
- fat oil and grease,
- washings from metals,
- strong organic waste and
- weak organic waste.

It also treats the surplus activated sludge from small wastewater treatment plants.

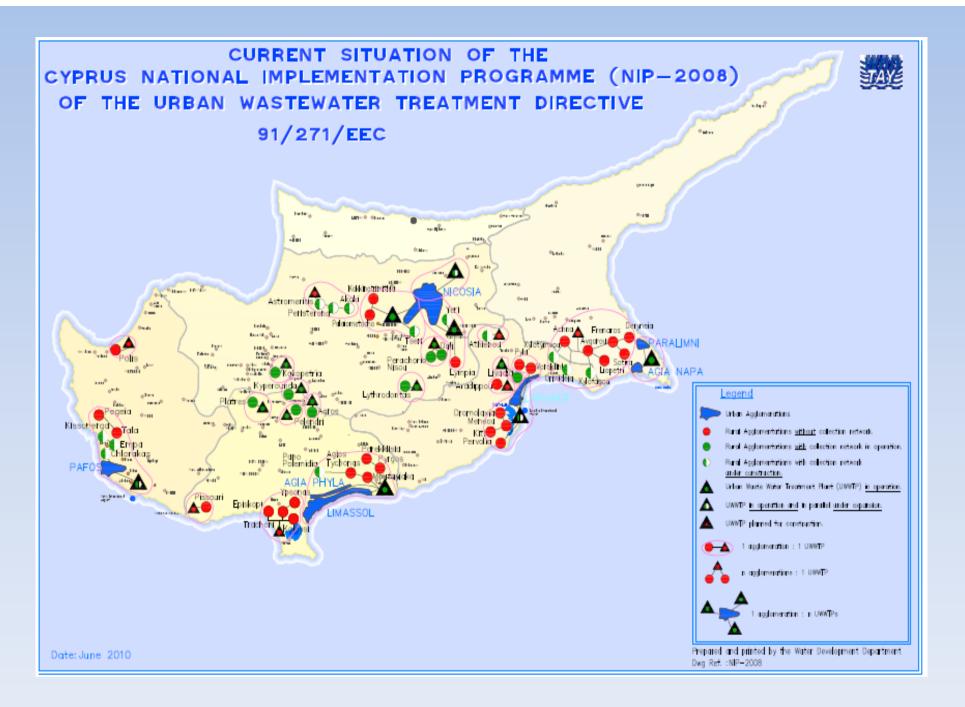
c) Existing Rural Wastewater Treatment Plants (> 2000p.e.)

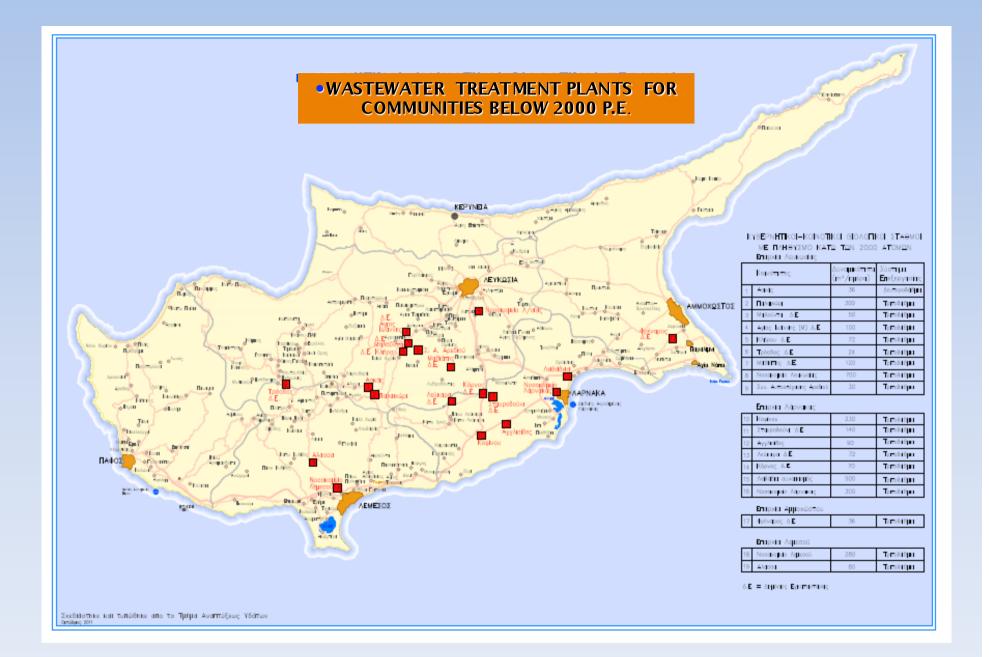
Plant	Owner	Capacity (m³/day)
Kyperounta	Sewerage Board of Kyperounta	300
Platres	Sewerage Board of Platres	300
Agros	Sewerage Board of Agros	450
Lythrodontas	Sewerage Board of Lythrodontas	360
Pelentri	Sewerage Board of Pelentri	300
Dali	Sewerage Board of Dali –Pera Chorio Nisou	500

d) Existing Rural Wastewater Treatment Plants (< 2000p.e.)

A/A	Plant	Owner	Capacity
			(m³/day)
1	Alassa	Limassol District Officer	80
2	Askas	Sewerage Board of Askas	36
	Kakopetria	Sewerage Board of	
3	(Center)	Kakopetria	144
		Sewerage Board of	
4	Agglissides	Agglissides	90
		Sewerage Board of	
5	Palechori	Palechori	300

e) Existing Wastewater Treatment Plants for Refugee Housing


A/A	Plant	Capacity (m³/day)
1	Kofinou	80
2	Livadia	36
3	Arediou	90


f) Existing Wastewater Treatment Plants for Hospitals

A/A	Plant	Capacity (m³/day)
1	Nicosia New Hospital	700
2	Larnaca Hospital	300
3	Limassol Hospital	280

g) Existing Wastewater Treatment Plants for Military Camps

A/A	Plant	Capacity (m³/day)
1	Military Camp 1	100
2	Military Camp 2	72
3	Military Camp 3	70
4	Military Camp 4	72
5	Military Camp 5	120
6	Military Camp 6	50
7	Military Camp 7	140
8	Military Camp 8	24
9	Military Camp 9	36

3. SUPPLY OF TREATED EFFLUENT

The policy of the Government is that the treated effluent produced by the Urban Sewerage Boards will be handled and disposed by the Government. For this reason the Water Development Department is responsible for the supply of treated effluent from the urban wastewater treatment plants.

The cost for the construction and the operation and maintenance of the tertiary treatment plant carried out by the Urban Sewerage Boards is undertaken by the Government. **4. REUSE OF TREATED EFFLUENT**

IN CYPRUS THE TREATED EFFLUENT FROM THE URBAN WASTEWATER TREATMENT PLANTS IS REUSED FOR THE FOLLOWING PURPOSES :

- IRRIGATION
- ENRICHMENT OF UNDERGROUND WATER (PAPHOS WASTEWATER TREATMENT PLANT)

THE IRRIGATION IS DONE UNDER THE CODE OF CORRECT AGRICULTURAL PRACTICE.

4.1 OTHER WAYS OF DISPOSAL

• DISCHARGE INTO THE SEA

IN THE PAST YEARS DURING SOME WINTER MONTHS IN LARNACA AND LIMASSOL THERE WAS NO DEMAND AND SOME QUANTITIES WERE DISCHARGED INTO THE SEA. •15

5. QUANTITIES OF TREATED EFFLUENT PER PLANT

TABLES AND GRAPHS ARE FOLLOWING WITH THE PRODUCED QUANTITIES OF TREATED EFFLUENT FOR THE YEARS 2004–2011

5.1 YEARLY QUANTITIES OF TREATED EFFLUENT PER PLANT

5.2 YEARLY QUANTITIES OF TREATED EFFLUENT USED FOR IRRIGATION

5.3 GRAPH FOR QUANTITIES OF TREATED EFFLUENT USED FOR IRRIGATION

5.4 YEARLY QUANTITIES OF TREATED EFFLUENT PER PLANT DISCHARGED TO THE SEA

5.5 GRAPH FOR LIMASSOL AND LARNACA PERCENTAGES OF TREATED EFFLUENT DISCHARGED TO THE SEA.

5.6 YEARLY QUANTITIES OF TREATED EFFLUENT USED FOR AQUIFER RESCHARGE

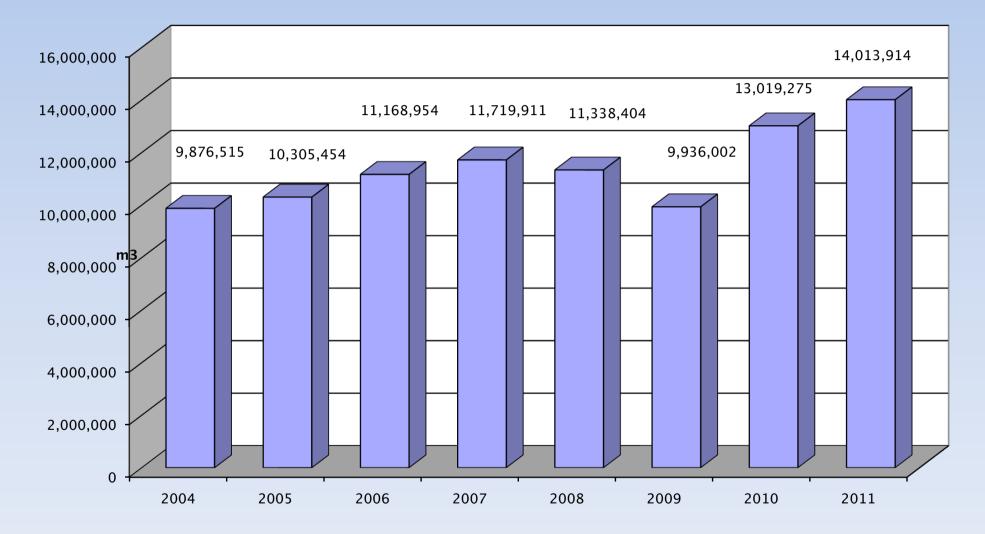
5.7 2004-2011 QUANTITIES AND USES OF TREATED EFFLUENT

5.8 TREATED EFFLUENT DISPOSAL FROM THE URBAN WASTEWATER TREATMENT

PLANTS FOR THE YEAR 2011

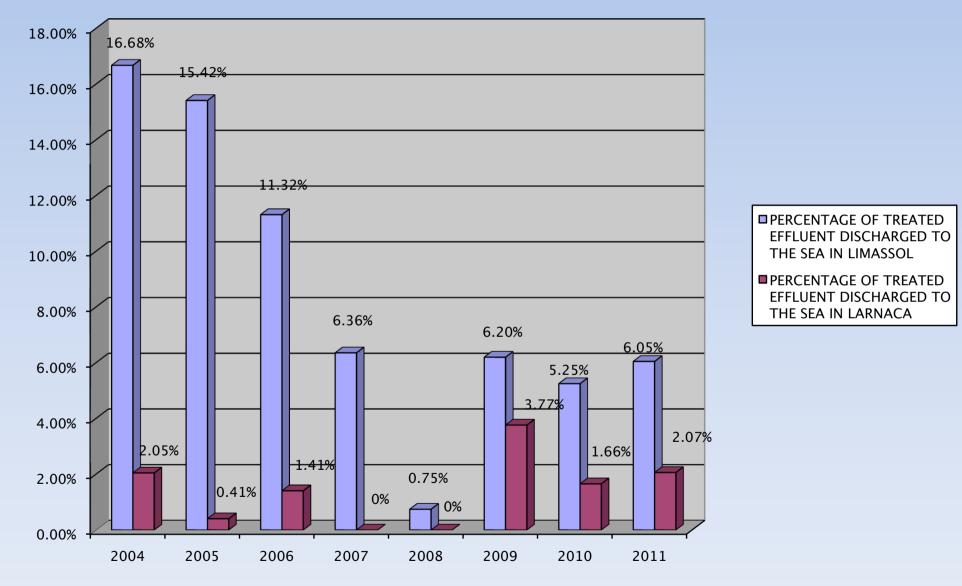
5.9 2011 PERCENTAGES OF TREATED EFFLUENT DISPOSED

5.10 2011 USES OF TREATED EFFLUENT FROM URBAN WASTEWATER TREATMENT PLANT


5.1 YEARLY QUANTITIES OF TREATED EFFLUENT PER PLANT

	QUANTITIES (m ³)							
WASTEWATER TREATMENT PLANT	2004	2005	2006	2007	2008	2009	2010	2011
LIMASSOL	6.246.854	6.417.670	6.548.390	6.435.900	5.490.179	5.820.010	6.635.360	6.667.050
PAPHOS	1.837.730	2.177.883	2.952.463	2.553.812	2.380.061	2.325.182	2.460.547	2.293.563
ΑΥΙΑ ΝΑΡΑ	790.926	849.204	680.129	852.220	966.609	972.389	1.056.312	1.011.401
PARALIMNI	1.076.131	1.426.513	1.730.827	1.419.793	1.320.053	1.131.951	1.316.818	1.444.503
LARNAKA	2.287.663	1.876.764	2.139.196	1.935.294	1.840.117	1.774.498	2.021.626	2.198.119
ANTHOUPOLIS	297.600	297.600	292.000	292.000	295.376	573.357	828.362	976.715
VATHIA GONIA (WDD)	457.930	365.502	419.553	335.237	310.874	314.958	293.905	230.640
VATHIA GONIA (SBN)							647.034	1.699.626
TOTAL PRODUCTION (m ³) (A)	12.994.83	413.411.13	6 14.762.558	<mark>813.824.25</mark>	<mark>612.603.26</mark>	9 12.912.345	15.259.96	<mark>416.521.61</mark>
REFUGEE HOUSINGS (3 2007, 4 2009,2010, 3 2011)	275.575	275.575	275.575	275.575	323.025	323.025	323.025	277.400
HOSPITALS (4 2007, 5 2009, 2010, 4 2011,)	368.650	368.650	368.650	368.650	540.200	540.200	540.200	474.500
SMALL COMMUNITIES < 2.000 P.E. (3 2007, 4 2009, 2010, 5 2011)	167.900	167.900	167.900	167.900	204.400	204.400	204.400	237.250
MILITARY CAMPS (8 2007, 9 2009, 2010, 2011,)	150.745	150.745	150.745	150.745	249.660	249.660	249.660	249.660
RURAL COMMUNITIES > 2.000 P.E (4 2007, 5 2009, 6 2010, 2011)	456.250	456.250	456.250	456.250	587.650	587.650	770.150	770.150
SUBTOTAL (B)	1.419.120	1.419.120	1.419.120	1.419.120	1.904.935	1.904.935	2.087.435	2.008.960
GRAND TOTAL (A) +(B)	14.413.95	414.830.25	5 16.181.678	315.243.37	614.508.20	4 14.817.280	17.347.39	918.530.57

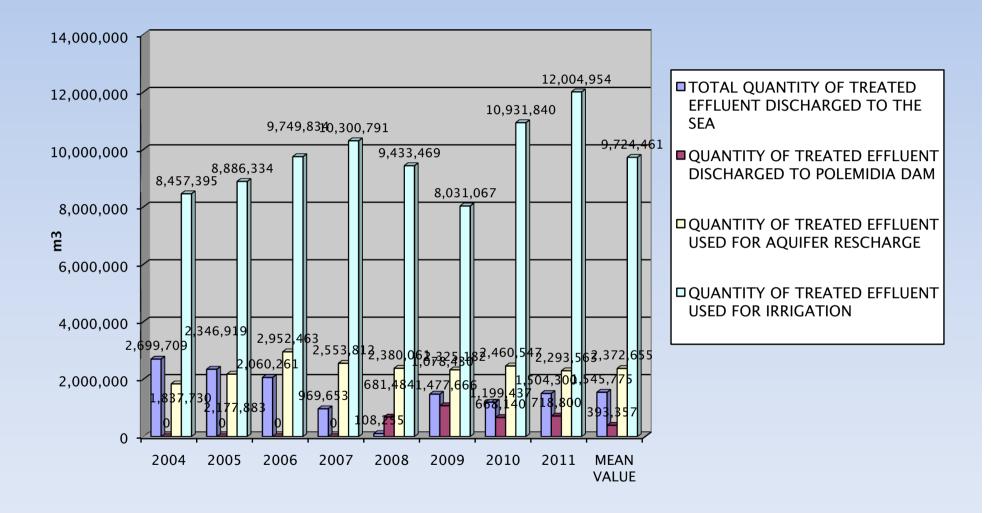
5.2 YEARLY QUANTITIES OF TREATED EFFLUENT USED FOR IRRIGATION


WASTEWATER TREATMENT PLANT	IRRIGATION							
	2004	2005	2006	2007	2008	2009	2010	2011
LIMASSOL	3.842.671	4.131.167	4.716.458	5.466.247	4.700.440	3.822.240	5.055.630	4.826.700
PAPHOS	0	0	0	0	0	0	0	0
AYIA NAPA	790.926	849.204	680.129	852.220	966.609	972.389	1.056.312	1.011.401
PARALIMNI	1.076.131	1.426.513	1.730.827	1.419.793	1.320.053	1.131.951	1.316.818	1.444.503
LARNAKA	1.992.137	1.816.348	1.910.867	1.935.294	1.840.117	1.216.172	1.733.779	1.815.369
ANTHOUPOLIS	297.600	297.600	292.000	292.000	295.376	573.357	828.362	976.715
VATHIA GONIA (WDD)	457.930	365.502	419.553	335.237	310.874	314.958	293.905	1.699.626
VATHIA GONIA (SBN)							647.034	230.640
TOTAL PRODUCTION (m ³) (A)	8.457.395	8.886.334	9.749.834	10.300.791	9.433.469	8.031.067	10.931.840) 12.004.95
REFUGEE HOUSINGS (3 2007, 4 2009,2010, 3 2011)	275.575	275.575	275.575	275.575	323.025	323.025	323.025	277.400
HOSPITALS (4 2007, 5 2009, 2010, 4 2011,)	368.650	368.650	368.650	368.650	540.200	540.200	540.200	474.500
SMALL COMMUNITIES < 2.000 P.E. (3 2007, 4 2009, 2010, 5 2011, 2012)	167.900	167.900	167.900	167.900	204.400	204.400	204.400	237.250
MILITARY CAMPS (8 2007, 9 2009, 2010, 2011,)	150.745	150.745	150.745	150.745	249.660	249.660	249.660	249.660
RURAL COMMUNITIES > 2.000 P.E (4 2007, 5 2009, 6 2010, 2011,2012)	456.250	456.250	456.250	456.250	587.650	587.650	770.150	770.150
SUBTOTAL (B)	1.419.120	1.419.120	1.419.120	1.419.120	1.904.935	1.904.935	2.087.435	2.008.960
GRAND TOTAL (A) +(B)	9.876.515	10.305.454	11.168.954	11.719.911	11.338.404	9.936.002	13.019.27	514.013.91

5.3 GRAPH FOR QUANTITIES OF TREATED EFFLUENT USED FOR IRRIGATION

5.4 YEARLY QUANTITIES OF TREATED EFFLUENT PER PLANT DISCHARGED TO THE SEA

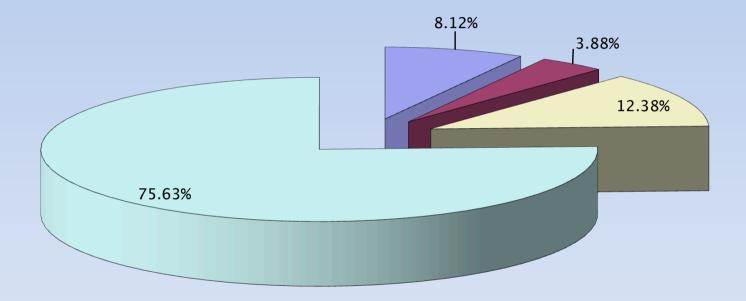
WASTEWATER TREATMENT PLANT		SEA						
	2004	2005	2006	2007	2008	2009	2010	2011
LIMASSOL	2.404.183	2.286.503	1.831.932	969.653	108.255	919.340	911.590	1.121.550
PAPHOS	0	0	0	0	0	0	0	0
AYIA NAPA	0	0	0	0	0	0	0	0
PARALIMNI	0	0	0	0	0	0	0	0
LARNAKA	295.526	60.416	228.329	0	0	558.326	287.847	382.750
ANTHOUPOLIS	0	0	0	0	0	0	0	0
VATHIA GONIA (WDD)	0	0	0	0	0	0	0	0
VATHIA GONIA (SBN)							0	0
TOTAL PRODUCTION (m ³) (A)	2.699.709	2.346.919	2.060.261	969.653	108.255	1.477.660	51.199.43	71.504.30(

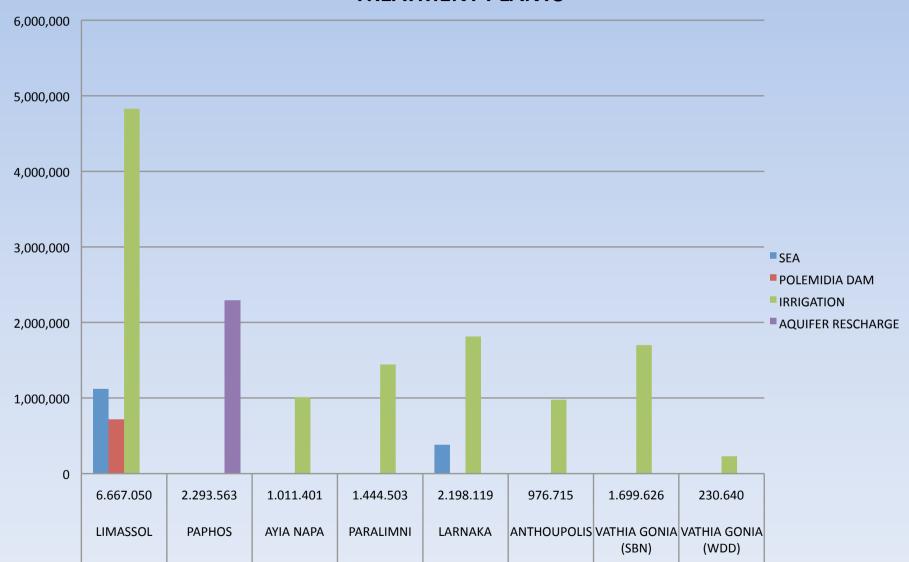


5.5 GRAPH FOR LIMASSOL AND LARNACA PERCENTAGES OF TREATED EFFLUENT DISCHARGED TO THE SEA

5.6 YEARLY QUANTITIES OF TREATED EFFLUENT USED FOR AQUIFER RESCHARGE

WASTEWATER TREATMENT PLANT	AQUIFER RESCHARGE							
	2004	2005	2006	2007	2008	2009	2010	2011
LIMASSOL								
PAPHOS	1.837.730	2.177.883	2.952.463	2.553.812	2.380.061	2.325.182	2.460.547	2.293.563
AYIA NAPA								
PARALIMNI								
LARNAKA								
ANTHOUPOLIS								
VATHIA GONIA (WDD)								
VATHIA GONIA (SBN)								
TOTAL PRODUCTION (m ³) (A)	1.837.73	02.177.883	32.952.463	32.553.81	2 2.380.061	2.325.18	2 2.460.547	2.293.563


5.7 2004 – 2011 QUANTITIES AND USES OF TREATED EFFLUENT


5.10 TREATED EFFLUENT DISPOSAL FROM THE URBAN WASTEWATER TREATMENT PLANTS FOR THE YEAR 2011

WASTEWATER TREATMENT PLANT	YEARLY QUANTITY	TREATED EFFLUENT DISPOSAL (m ³)				
		SEA	POLEMIDIA DAM	IRRIGATION	AQUIFER RESCHARGE	TOTAL
LIMASSOL	6.667.050	1.121.550	718.800	4.826.700	0	6.667.050
PAPHOS	2.293.563			0	2.293.563	2.293.563
AYIA NAPA	1.011.401			1.011.401	0	1.011.401
PARALIMNI	1.444.503			1.444.503	0	1.444.503
LARNAKA	2.198.119	382.750		1.815.369	0	2.198.119
ANTHOUPOLIS	976.715			976.715	0	976.715
VATHIA GONIA (SBN)	1.699.626			1.699.626	0	1.699.626
VATHIA GONIA (WDD)	230.640			230.640	0	230.640
TOTAL PRODUCTION (m ³) (A)	16.521.617	1.504.300	718.800	12.004.95	42.293.563	3 16.521.61

5.9 2011 PERCENTAGES OF TREATED EFFLUENT DISPOSED

PERCENTAGE OF TREATED EFFLUENT DISCHARGED TO THE SEA
 PERCENTAGE OF TREATED EFFLUENT DISCHARGED TO POLEMIDIA DAM
 PERCENTAGE OF TREATED EFFLUENT USED FOR AQUIFER RESCHARGE
 PERCENTAGE OF TREATED EFFLUENT USED FOR IRRIGATION PURPOSES

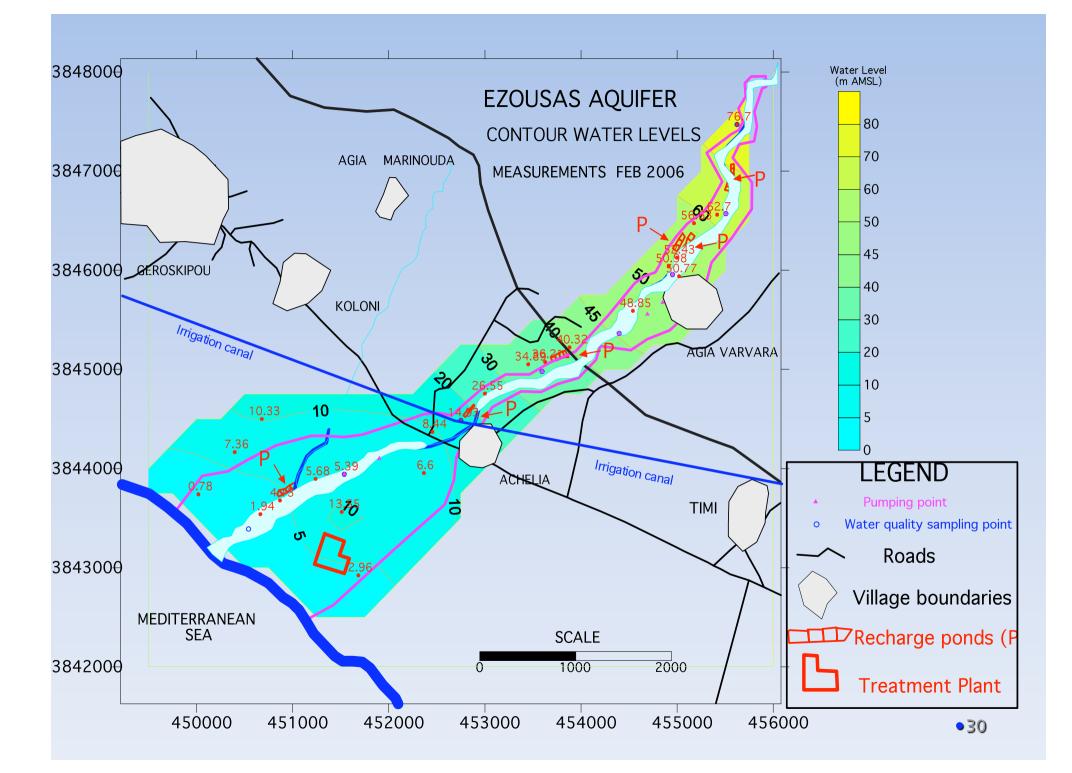
5.10 2011 USES OF TREATED EFFLUENT FROM URBAN WASTEWATER TREATMENT PLANTS

6. FUTURE QUANTITIES OF TREATED EFFLUENT

	2015	2025
MUNICIPAL WASTEWATER TREATMENT PLANTS	51,000,000	69,000,000
WASTEWATER TREATMENT PLANTS FOR RURAL COMMUNITIES	14,000,000	16,000,000
TOTAL QUANTITIES	65,000,000	85,000,000

7. SELLING RATES OF TREATED EFFLUENT FROM TERTIARY TREATMENT PLANTS

The rate of the treated effluent from the big wastewater treatment has ministerial decree as per the following table. These rates are charged by

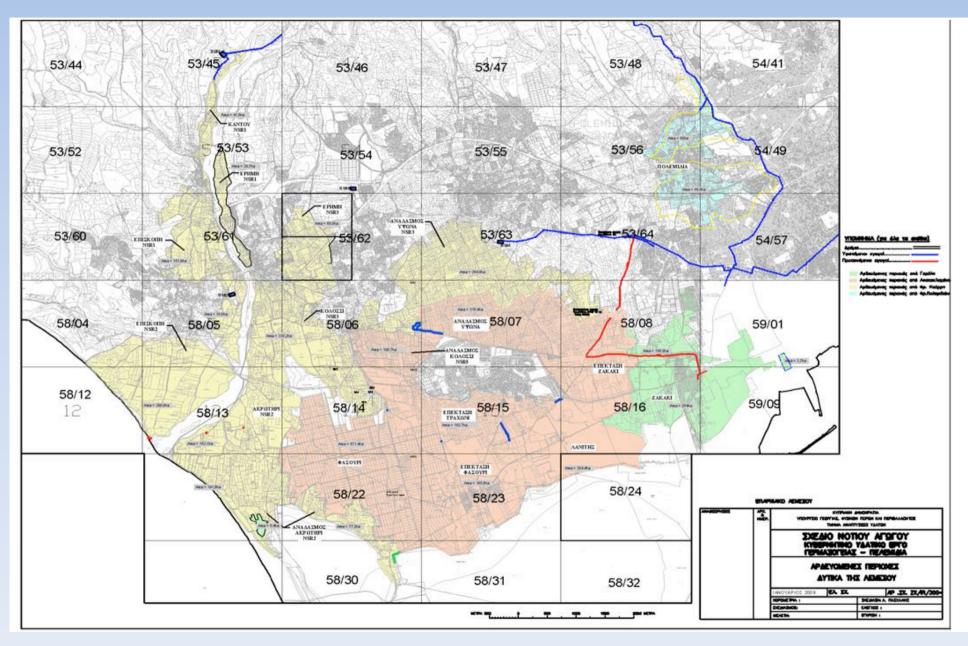

		Water Selling Rate	
A/A	USE	Existing Rate of Tertiary Treate Effluent	
		EURO Cent/ m	ŒURO Cent∕ m
1	a) For Irrigation divisions for agricultural production	5	15
	b)For Persons for agricultural production	7	17
2	For sports	15	<u>34</u> 34
3	For irrigation of hotels green are and gardens		34
4	For irrigation of Golf Courses	21	34
5	For pumping from an undergrou aquifer recharged by treated er		
6	For o∨er consumption for items	¹ iদease by 50%	56
7	For municipal parks, green areas for rural communities where a p has been built within its limits a the quantity does not exceed th approved quantity of more than		

8. AQUIFER RESCHARGE

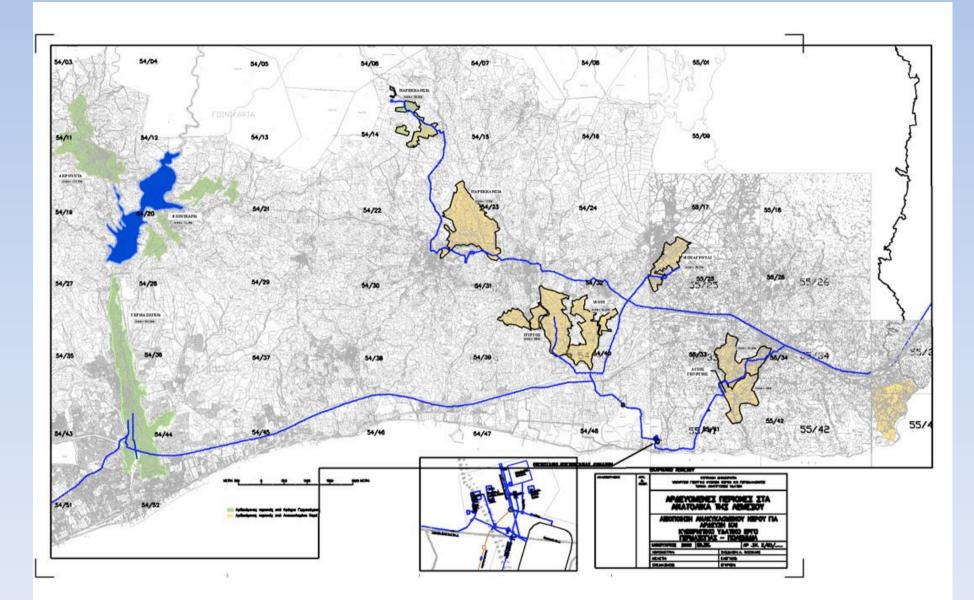

8.1 AREA OF PAPHOS

IN THIS AREA THE TREATED EFFLUENT IS USED FOR THE ENRICHMENT OF EZOUSA AQUIFER.

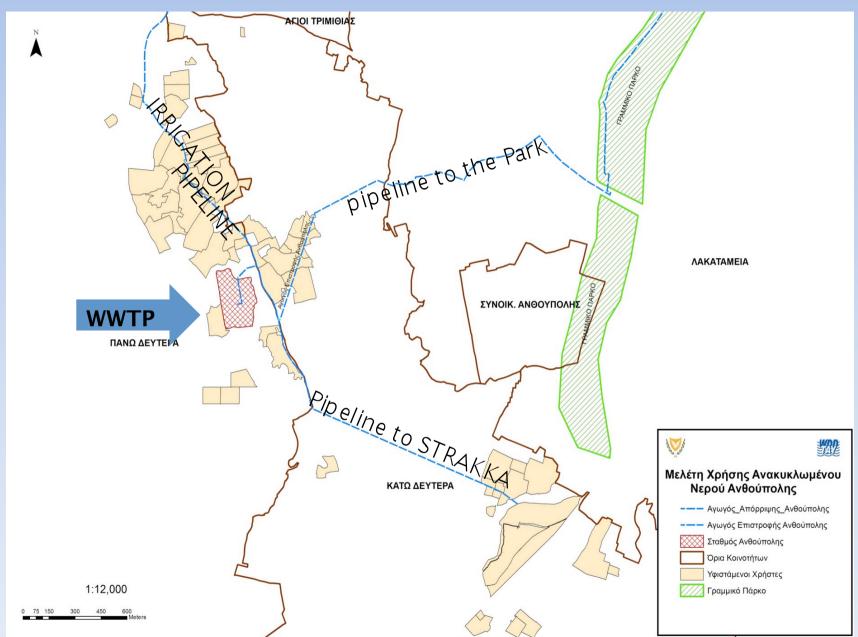
THE MAP OF THE POINTS OF ENRICHMENT OF EZOUSA AQUIFER - PAPHOS



9. TREATED EFFLUENT IRRIGATION NETWORKS



9.1 LARNACA A REA TREATED EFFLUENT IRRIGATION NETWORK


9.2a LIMASSOL AREA TREATED EFFLUENT IRRIGATION NETWORK

9.2b LIMASSOL AREA TREATED EFFLUENT IRRIGATION NETWORK

•34

9.3 IRRIGATION NETWORK FOR ANTHOUPOLIS WWTP

10. OTHER USES OF TREATED EFFLUENT 10.1 TREATED EFFLUENT FOR RURAL COMMUNITIES AND REFUGEE HOUSING ESTATES

THE TREATED EFFLUENT IN THESE AREAS IS MAINLY USED FOR:

- AGRICULTURAL USE
- GREEN AREAS

FOLLOWING THE CORRECT CODE FOR THE AGRICULTURE PRACTICE

10.2 TREATED EFFLUENT FOR HOSPITALS AND MILITARY CAMPS

THE TREATED EFFLUENT IN THESE AREAS IS MAINLY USED FOR.

• GREEN AREAS

11. QUALITY CHARACTERISTICS AND CONTROL OF THE TREATED EFFLUENT FOR AGGLOMERATIONS ABOVE 2000P.E. ACCORDING TO THE DISCHARGE PERMITS:

According to the Laws of the Water Pollution Control of 2002 until 2007, for the big municipal wastewater treatment plants the Minister Of Agriculture is issuing a Wastewater Discharge Permit for the same Wastewater treatment Plant to the following competent authorities:

- Sewerage Boards
- Water Development Department

In the Discharge Permit the following are defined:

- quality characteristics.
- number and the type of analyses
- disposal of the treated effluent

For the Discharge Permit of the Water Development Department the following are included:

- •Name of Authority : Water Development Department
- •Type of Process: Disposal of Treated Effluent
- •Type of Discharge: Treated effluent from the wastewater treatment plant.

•The Water Development Department and the Sewerage Boards are also following the quality of the treated effluent according to the requirements of their Discharge Permits.

• THE QUALITY CHARACTERISTICS AND THE FREQUENCY OF ANALYSES OF THE TREATED EFFLUENT WHICH ARE INCLUDED IN THE DISCHARGE PERMITS FOR THE WASTEWATER TREATMENT PLANTS ARE PRESENTED IN THE FOLLOWING TABLES:

DISCHARGE PERMITS FOR QUALITY AND CONTROL FOR URBAN WASTEWATER TREATMENT PLANTS
FREQUENCY OF ANALYSES AND MAXIMUM LIMITS FOR WWTP FOR COMMUNITIES WITH ABOVE 2000P.E.

REPUBLIC OF CYPRUS MINISTRY OF AGRICULTURE NATURAL RESOURCES & ENVIRONMENT WATER DEVELOPMENT DEPARTMENT WASTEWATER AND REUSE DIVISION

DISC	harge pei	RMITS EFFLUENT QUA	ALITY AND CO	NTROL REQUIREM	IENTS ISSUED	BY THE ENV	VIRONMENT S	ervice for	r WDD		
		AYIA NAPA - PARALIMNI SEWAGE TREATMENT PLANT		LIMASSOL AM SEWAGE TREAT				PAPHOS SEWAGE TREATMENT PLANT) (A)		SEWAG	POLIS-NICOSIA E TREATMENT _ANT (A)
PARAMETERS		Maximum Permitteo Value		Maximum Permitted Value	Frequency of analyses	Maximum Permitted Value	Frequency of analyses		Frequency of analyses (b)		Frequency of analyses (b)
рН		6,5 8,5	4/year	6,5 8,5	4/year	6,5 8,	5 4/year	6,5 8,	5 4/year	6,5 8,	5 4/year
COD (mg/l)		70	4/year	70	4/year	70	4/year	70	4/year	70	4/year
BOD5 (mg/l)		10	4/year	10	4/year	10	4/year	10	4/year	10	4/year
Suspended Solids (mg/l)		10	4/year	10	4/year	10	4/year	10	4/year	10	4/year
Total Nitrogen (mg/l)		15 ⁽⁴⁾	4/year	1 5 ^{(1) (2)}	4/year	15 ⁽³⁾	4/year	15	4/year		4/year
Nitrates (mg/l)											
Chlorides (mg/l)		300	4/year	300	4/year	300	4/year	300	4/year	300	4/year
Fat and Oil (mg/l)		5	4/year	5	4/year	5	4/year	5	4/year	5	4/year
Residual Chlorine (mg/l)		1	4/year	1 ^{(1) (2)}	4/year	1 ⁽³⁾	4/year	1	4/year		4/year
Total Phosphorous (mg/l)		2 ⁽⁴⁾	4/year	10 ^{(1) (2)}	4/year	10 (3)	4/year	10	4/year		4/year
E. Coli (units/100ml)		50 / 100ml	4/year	50 / 100m ^{l)}	4/year	5 / 100ml	4/year	50 / 100ml	4/year	5 / 100ml	4/year
Eggs of Intestinal Worms		nothing /I	4/year	nothing /I	4/year	nothing		nothing		nothing	/I 4/year
Conductivity(µS/cm)		2200	4/year	2200	4/year	2900	4/year	1700	4/year	2200	4/year
Heavy Metals in reused effluent			-		-						-
Zinc(mg/l)		1	2/year	0,1 ⁽²⁾	2/year	0,1	2/year	1	2/year	1	2/year
Copper (mg/l)		0,1	2/year	0,1	2/year	0,1	2/year	0,1	2/year	0,1	2/year
Lead (mg/l)		0,15	2/year	0,15	2/year	0,15	2/year	0,15	2/year	0,15	2/year
Cadmium (mg/l)		0,01	2/year	0,01	2/year	0,01	2/year	0,01	2/year	0,01	2/year
Mercury (mg/l)		0,005	2/year	0,005	2/year	0,005	2/year	0,005	2/year	0,005	2/year
Chromium (mg/l)		0,1	2/year	0,1	2/year	0,1	2/year	0,1	2/year	0,1	2/year
Nickel (mg/l)		0,2	2/year	0,2	2/year	0,2	2/year	0,2	2/year	0,2	2/year
Boron (mg/l)		1	2/year	0,75	2/year	1	2/year	1	2/year	1	2/year
Toxicity	Microtox							*a	4/year	*а	4/year
	Daphnia Algae										
	Algae										

(A) PRELIMINARY DISCHARGED PERMIT
*a :75 % of samples
Microtox TU50<1 TU 20<1.5
or Daphnia TU < 1
Algae TU < 1
Mutatox S9 not positive

Tor discharge into rolemidia Dam (sensitive area)								
Residual Chlorine (mg/l)	<2							
E. Coli (units/100ml)	5							
Total Nitrogen (mg/l)	10							
Total Phosphorous (mg/l)	1							
⁽²⁾ for discharge into the sea								
Residual Chlorine (mg/l)	0,5							
Zn (mg/l)	0,1							
Total Nitrogon	400 Kg /d (40,00							
Total Nitrogen	m ³ /hr TN 10 mg/l							
	80 Kg /d (40,000							
Total Phosphorous	m ³ /hr TP 2 mg/l)							

⁽¹⁾for discharge into Polemidia Dam (sensitive area)

⁽³⁾ for discharge into the sea		
Residual Chlorine (mg/l)		0,5
Total Nitrogen		100 Kg /d (8,500 m³/hr TN 11 mg/l
		20 Kg /d (8,500
Total Phosphorous		m^{3}/hr TP 2,3 mg/l

 $^{\rm (4)}$ or reduction of TN upto 70-80%

12. QUALITY SPECIFICATIONS OF THE TREATED EFFLUENT FOR AGGLOMERATIONS LESS THAN 2000 P.E.

QUALITY SPESIFICATIONS OF THE TREATED EFFLUENT FROM MUNICIPAL WASTEWATER TREATMENT PLANTS FROM AGGLOMERATIONS LESS THAN 2000 P.E.

	SPECIES ALLOWED TO BE IRRIGATED	BOD₅ mg∕l	SUSPENDED SOLIDS mg/l	E. COLI /100ml	INTESTINAL WORMS***
1	All CROPS AND GREEN AREAS WITH NOT RESTRICTED USE (A)	10*	10*	5*	NIL
2	COOKED VEGETABLES (B)	10*	10* 15**	50* 100**	NIL
3	PRODUCTS FOR HUMAN EATING , GREEN AREAS WITH RESTRICTED USE BY THE PUBLIC	30**	45**	1000**	NIL
4	FODDER CROPS	20* 30**	30* 45**	1000* 5000**	NIL
5	INDUSTRIAL PLANTS	50* 70**		3000* 10000**	

* 80% OF THE SAMPLES, 24 SAMPLES / YEAR

** MAXIMUM ACCEPTABLE VALUE

*** SAMPLING FREQUENCY ONCE A YEAR / SUMMER MONTHS

(a) VEGETABLES WITH LEAVES, BULBS AND CONDYLES EATEN RAW

(b) POTATOES, BEETROOTS

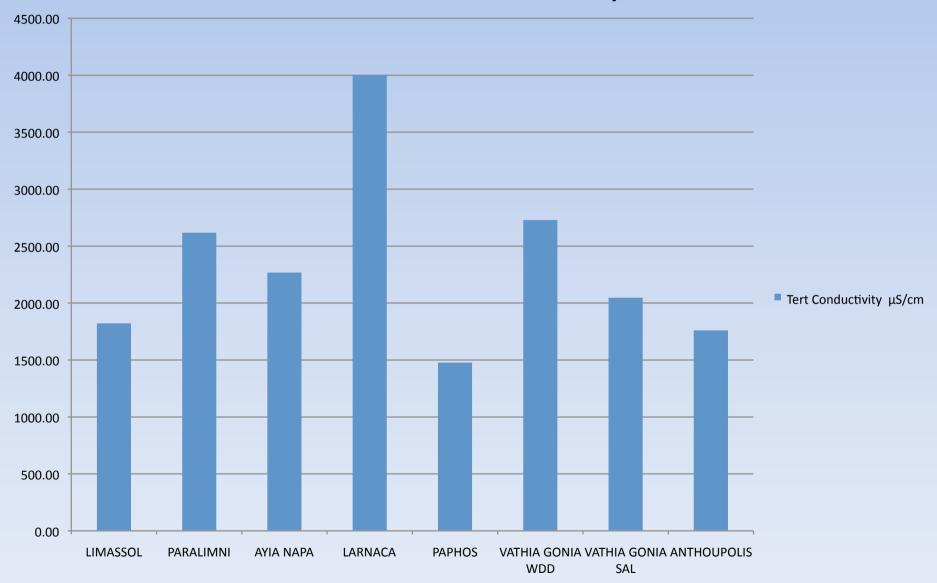
13. ANALYSES OF TREATED EFFLUENT

IN THE FOLLOWING TABLES AND GRAPHS ARE PRESENTED THE FOLLOWING:

•2010 CHEMICAL ANALYSES YEARLY MEAN VALUES FOR ALL THE URBAN WASTEWATER TREATMENT PLANTS

•2010 YEARLY NUMBER OF SAMPLES FOR ALL THE URBAN WASTEWATER TREATMENT PLANTS

• GRAPH FOR 2010 TREATED EFFLUENT CONDUCTIVITY FOR ALL THE URBAN WASTEWATER TREATMENT PLANTS


2010 CHEMICAL ANALYSES YEARLY MEAN VALUES

	TERTIARY TREATMENT OUTLET												TERTIARY			
	Tert BOD₅ mg/l	Tert Specs BOD₅ mg/I	Tert COD mg/l	рН	Tert Conduct ivity μS <i>I</i> cm	Tert TKN mg/l	Tert SS mg/l	SS	Tert Free Ammon iacal Nitroge n mg/	Boron	Residual Chlorine mg/I	Tert Nitrates mg/l	Tert Tota Phosphro us mg/l	E.coli / 100ml	Specs E.coli / 100ml	Intestinal Worms / 100ml
LIMASSOL	3,00	10,00	28,00	8,13	1822,5	0 5,88	9,75	10,00		0,40	0,35	5,27	2,65	0,80	50,00	0,00
PARALIMNI	3,00	10,00	25,50	7,90	2617,5	0 7,10	7,00	10,00		0,50	0,05	2,70	1,78	8537,75	50,00	0,00
AYIA NAPA	3,00	10,00	24,50	7,28	2268,2	5 8,38	7,00	10,00		0,47	0,69	3,93	2,73	0,75	50,00	0,00
LARNACA		10,00	43,40	7,70	4002,0	0 17,20	12,00	10,00		0,93	7,50	2,08	3,16	0,40	5,00	0,00
PAPHOS	4,25	10,00	28,25	7,65	1477,5	0 9,00	7,00	10,00		0,30	0,01	3,77	1,05	2,75	50,00	0,00
VATHIA GONIA WDD	3,45	10,00	29,18	7,83	2728,4	5 9,06	7,30	10,00		0,60	3,90	2,80	5,06	2017,44	50,00	0,00
VATHIA GONIA SAL	3,25	10,00	25,50	8,08	2046,2	5 5,56	7,00	10,00		0,90	0,01	7,86	2,63	1,00	5,00	0,00
ANTHOUPOLIS	12,25	10,00	34,25	7,78	1760,5	0 39,58	7,00	10,00		0,81	0,01	3,55	1,55	18,00	5,00	0,00

2010 YEARLY NUMBER OF SAMPLES/ ANALYSES

		TERTIARY TREATMENT										TERTIARY	
	Tert BOD₅	Tert COD	рН	Tert ACe Ομι aXaΠ	Tert AФе аь Kjeldahl	Tert SS	Tert ВиЭιЬ mg/l	Tert Residual Chlorine	Tert Nitrates	Tert Tota phosphoro us	E.coli	Intestinal Worms	
LIMASSOL	4,00	4,00	4,00	4,00	4,00	4,00	2,00	4,00	3,00	4,00	5,00	5,00	
PARALIMNI	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	3,00	4,00	4,00	4,00	
ΑΥΙΑ ΝΑΡΑ	4,00	4,00	4,00	4,00	4,00	4,00	3,00	4,00	3,00	4,00	4,00	4,00	
LARNACA	4,00	5,00	5,00	5,00	5,00	4,00	3,00	5,00	4,00	5,00	5,00	5,00	
PAPHOS	4,00	4,00	4,00	4,00	4,00	4,00	2,00	4,00	3,00	4,00	4,00	4,00	
VATHIA GONIA (WDD)	11,00	11,00	11,00	11,00	11,00	10,00	2,00	11,00	11,00	11,00	9,00	1,00	
VATHIA GONIA (SBN)	8,00	8,00	8,00	8,00	8,00	8,00	1,00	8,00	8,00	8,00	7,00	1,00	
ANTHOUPOLIS	4,00	4,00	4,00	4,00	4,00	4,00	3,00	4,00	4,00	4,00	4,00	4,00	

2010 Treated Effluent Conductivity

14. METHODS OF DISINFECTION OF URBAN WASTEWATER TREATMENT PLANTS

TYPE OF DISINFECTION								
NAME OF WWTP	TYPE	METHOD						
LIMASSOL	CHLORINATION	ONSITE CHLORINE GENERATION AND SODIUM HYPOCHLORITE						
PARALIMNI	CHLORINATION	GAS CHLORINE						
AYIA NAPA	CHLORINATION	GAS CHLORINE						
LARNACA	CHLORINATION	ONSITE CHLORINE GENERATION AND SODIUM HYPOCHLORITE						
PAPHOS	CHLORINATION	GAS CHLORINE						
VATHIA GONIA (WDD)	CHLORINATION	GAS CHLORINE						
VATHIA GONIA (SBN)	UV DISINFECTION	_						
ANTHOUPOLIS	UV DISINFECTION							

15. DATA FOR SOIL IRRIGATED WITH TREATED EFFLUENT

2010 DATA FOR SOIL IRRIGATED WITH TREATED EFFLUENT

LIMASSOL AREA.

Sampling Date:	08/09/2010
Control Parameters	
Plot No:	39, LAYOUT.: 54/40 W1
Excangeable cations (mg/kg)	2015,5
Total Salinity (mg/kg)	970,2

ANTHOUPOLIS AREA.

Sampling Date:	07/09/2010
Control Parameters	
Plot No.	384
Excangeable cations (mg/kg)	239,10
Total Salinity (mg/kg)	826,20

16. GENERAL COMMENTS FOR THE REUSE OF TREATED EFFLUENT

The treated effluent is another constant source of water.

The Government's policy is to introduce the treated effluent in the Cyprus Water Balance.

The Quality is under control and remains constant.

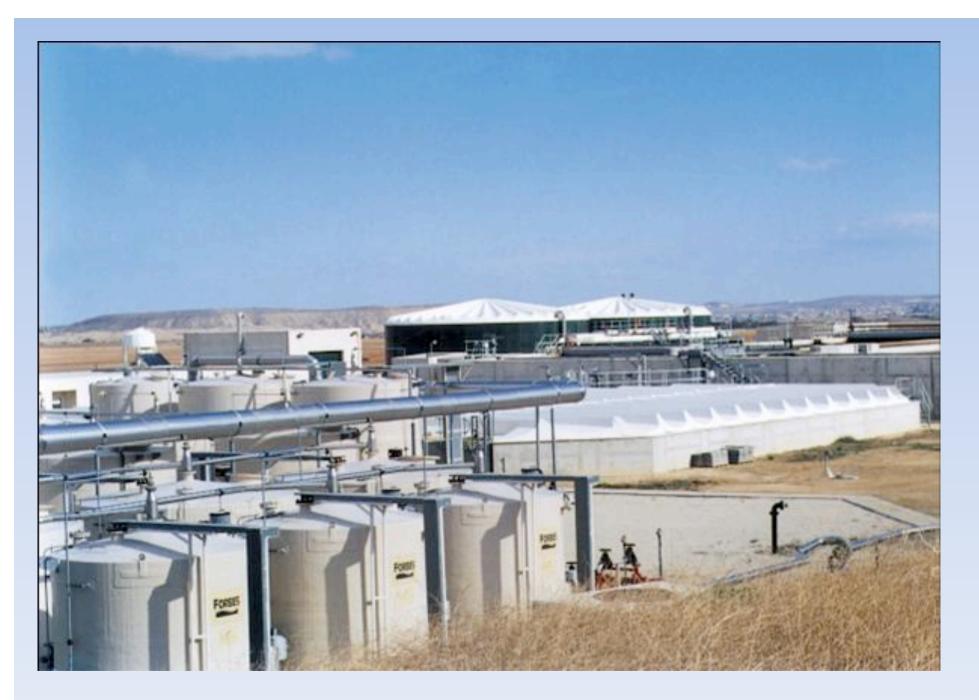
The treated effluent is suitable for the majority of the crops.

Almost all the Wastewater Treatment Plants are equipped with Tertiary Treatment, consisting of Sand Filtration and Chlorination in order to achieve higher quality characteristics in order to use the treated effluent in the Agriculture.

The farmers use less quantities of fertilisers because the treated effluent contains already nutrients such as Phosphorous and Nitrogen.

ΤΜΗΜΑ ΑΝΑΠΤΥΞΕΩΣ ΥΔΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΓΕΩΡΓΙΑΣ, ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ


• LIMASSOL (MONI) WWTP

ANTHOUPOLIS WASTEWATER TREATMENT PLANT -SBN

VATHIA GONIA WASTEWATER TREATMENT PLANT -SBN

VATHIA GONIA CENTRAL WASTEWATER (SEPTIC SEWAGE/INDUSTRIAL WASTE) TREATMENT PLANT -WDD

LARNACA WASTEWATER TREATMENT PLANT-SBL •56

PARALIMNI-AYIA NAPA WASTEWATER TREATMENT PLANT

WATER DEVELOPMENT DEPARTMENT 1047 NICOSIA

REPUBLIC OF CYPRUS MINISTRY OF AGRICULTURE , NATURAL RESOURCES AND ENVIRONMENT

THANK YOU FOR YOUR TIME